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Abstract. We study a modified version of an equation of the continuous Toda type in 1+ 1
dimensions. This equation contains a friction-like term which can be switched off by annihilating
a free parameterε. We apply the prolongation method, and the symmetry and approximate
symmetry approaches. This strategy allows us to gain insight into both the equations forε = 0
and ε 6= 0, whose properties arising from the above frameworks we compare. Forε = 0, the
related prolongation equations are solved by means of certain series expansions which lead to
an infinite-dimensional Lie algebra. Furthermore, using a realization of the Lie algebra of the
Euclidean groupE2, a connection is shown between the continuous Toda equation and a linear
wave equation which resembles a special case of a three-dimensional wave equation that occurs
in a generalized Gibbons–Hawking ansatz (Lebrun C 1991J. Diff. Geom.34 223). Non-trivial
solutions to the wave equation expressed in terms of Bessel functions are determined.

For ε 6= 0, we obtain a finite-dimensional Lie algebra with four elements. A matrix
representation of this algebra yields solutions of the modified continuous Toda equation
associated with a reduced form of a perturbative Liouville equation. This result coincides
with that achieved in the context of the approximate symmetry approach. Example of exact
solutions are also provided. In particular, the inverse of the exponential-integral function turns
out to be defined by the reduced differential equation arising from a linear combination of the
time and space translations. Finally, a Lie algebra characterizing the approximate symmetries
is discussed.

1. Introduction

We investigate the equation

utt + εut = (eu)xx (1)

whereu = u(x, t), the subscripts denote partial derivatives andε is a constant. Forε = 0,
equation (1) is a continuous Toda system in 1+ 1 dimensions (or, equivalently, a two-
dimensional version of the so-called heavenly equation: self-dual Einstein spaces with a
rotational Killing vector [2]). The latter arises in many branches of physics, running from
the theory of Hamiltonian systems, to the topological field theory [3]. In the case in which
ε 6= 0, the termεut mimics a friction-like behaviour. Equation (1) forε 6= 0 has been
handled, in part, in [3] by means of an approximate group analysis.

Since 1989 up to now, there have been only a few applications of the Baikov–Gazizov–
Ibragimov method [3]. This is a valid motivation to handle the continuous Toda equation
with a perturbative term. In fact, the physical meaning and the ‘ubiquitous’ role of the Toda
equation is well-established; the presence of a perturbative friction-like term is of interest
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in its own right, and characterizes the spirit of the paper both by a methodological and a
speculative point of view.

We seek an algebraic characterization of (1) in both the casesε = 0 andε 6= 0. In
doing so, we resort to the prolongation method [4] and the symmetry approach [5, 6].
For simplicity, we shall keep the formal machinery inherent in these techniques to a
minimum. Our main results are as follows. Forε = 0 equation (1) can be written
as a set of (prolongation) differential equations which can be solved in terms of power-
series expansions whose coefficients (in the variablez = eu) depend on the pseudopotential
components and obey a presumably infinite-dimensional Lie algebra.

A remarkable fact is that this algebra can be closed ‘step-by-step’, in the sense that
a finite-dimensional Lie algebra emerges corresponding to each polynomial inz coming
from the truncation of the series. The use of a given representation of any closed Lie
algebra allows us to find a linear problem associated with the equation under consideration.
Furthermore, we show that the prolongation differential equations related to (1) (ε = 0)
afford a class of solutions connected to the Lie algebra of the Euclidean groupE2 in the
plane. This enables us to map (1) to the linear wave equation

ytt − euyxx = 0 (2)

wherey = y(x, t) is a pseudopotential variable. We point out that equation (2) is equivalent
to a (1 + 1)-dimensional version of [1, equation (2)] in which a generalized Gibbons–
Hawking ansatz [7] pertinent to a quantum theory of gravity is considered. Starting from
simple solutions of (1), examples of non-trivial solutions of (2) are shown.

In the caseε 6= 0, the prolongation algebra for (1) turns out to be finite dimensional.
This algebra is exploited to determine a class of special solutions via a reduced form of a
Liouville-type equation. The latter coincides with that arising in the context of the symmetry
approach. This feature suggests the existence of a possible link between the prolongation
method and the symmetry approach, which deserves further study. Finally, a self-similar
solution in terms of the exponential-integral function is obtained.

The paper is organized as follows. In section 2, the prolongation equations derived
for (1) are studied. In sections 3 and 4, the casesε = 0 and ε 6= 0 are considered,
respectively. Section 5 deals with the symmetry and the approximate symmetry approach
applied to (1). Precisely, the generators of the Lie point symmetries and approximate
symmetries are found. The latter can be characterized by a finite-dimensional Lie algebra
which admits a realization in terms of boson annihilation and creation operators. In section 6,
the main results are summarized and some comments are made. Finally, appendices A and B
contain details of calculations, while appendix C is devoted to a brief introduction to the
approximate symmetry method.

2. The prolongation equations

Let us consider the prolongation system for (1):

yix = F i(u, ut ; yj ) yit = Gi(u, ux; yj ) (3)

where i, j = 1, 2, . . . , N (N arbitrary), and the set of variables{yi} is the
pseudopotential [4]. The compatibility condition for (3) yields

F i = Liut +Mi Gi = Lieuux + P i (4)

whereMi = Mi(u; yj ), P i = P i(u; yj ), andLi = Li(yj ) are defined by

Mi
u + [P,L]i = ε Li (5)
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eu [L,M]i = P iu (6)

[M,P ]i = 0 (7)

where [P,L]i = P k ∂Li/∂yk − Lk ∂P i/∂yk, and so on.
Hereafter we shall omit the indexi for brevity. Now, we seek a solution of (5)–(7) of

the form

M =
∞∑
k=0

ak(y)z
k P =

∞∑
k=0

bk(y)z
k (8)

wherez = eu andy stands for the set of components{yj } (j = 1, 2, . . . , N).
By inserting the expansions (8) in (5)–(7), we obtain the following constraints between

the coefficientsak(y) andbk(y):

[b0, L] = εL (9)

[L, bk] = kak (10)

[L, ak−1] = kbk (11)

[a0, b0] = 0 (12)

[a0, b1] + [a1, b0] = 0 (13)

[a0, b2] + [a1, b1] + [a2, b0] = 0 (14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N∑
k=1

[ak−1, bN−k] = 0 (15)

wherek = 1, 2, . . . N (N arbitrary).
In order to scrutinize the commutation relations (9)–(15), two cases have to be

distinguished, i.e.ε = 0 andε 6= 0.

3. The caseε = 0

Let us assumeε = 0 in (9)–(15). Then, the systematic application of the Jacobi identity to
the commutation relations (9)–(15) produces an arbitrary number of finite-dimensional Lie
algebras with 2N + 1 generators (N = 1, 2, . . .), i.e. a0, a1, . . . , aN , b0, b1 . . . , bN , andL
(N arbitrary).

Although at present a rigorous proof is not given, this statement can be checked
heuristically ‘step-by-step’ in the sense explained below.

To this end, let us take (the first step)aj = 0, bj = 0, for j = 1, 2, . . . . Thus, from
equations (9)–(15) we obtain the Abelian Lie algebra

[a0, b0] = 0 [a0, L] = 0 [b0, L] = 0. (16)

Any realization of this algebra corresponds to a solution to (5)–(7) of the type
M = a0(y), P = b0(y) (with ε = 0). In this case, the prolongation system (3)–(4)
becomes

yx = Lut + a0 yt = Leuux + b0. (17)

Of course, the compatibility condition for the system (17) is fulfilled if (16) holds.
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Now, let us choose (the second step)aj = 0, bj = 0, for j = 2, 3, . . . . From
equations (9)–(15) we have (see appendix A)

[a0, a1] = 0 [a0, b0] = 0 [a0, b1] = 0 [a0, L] = −b1

[a1, b0] = 0 [a1, b1] = 0 [a1, L] = 0 [b0, b1] = 0

[b0, L] = 0 [b1, L] = −a1.

(18)

Equations (18) represent a non-Abelian Lie algebra defined by the five elements
a0, a1, b0, b1 and L. Any realization of the algebra (18) corresponds to a solution to
(5)–(7) of the type

M(u, y) = a0(y)+ a1(y)e
u (19)

P(u, y) = b0(y)+ b1(y)e
u. (20)

The prolongation equations (3), (4) related to (19), (20) are

yx = Lut + a0+ a1eu yt = Leuux + b0+ b1eu. (21)

The compatibility condition for this system is verified by the algebra (18).
Furthermore, as shown in appendix A, under the hypothesisaj = 0, bj = 0, for

j = 3, 4, . . . (the third step), equations (9)–(14) give rise to the prolongation Lie algebra
defined by the seven elementsa0, a1, a2, b0, b1, b2, andL:

[a0, a1] = 0 [a0, a2] = 0 [a0, b0] = 0 [a0, b1] = 0

[a0, b2] = 0 [a0, L] = −b1 [a1, a2] = 0 [a1, b0] = 0

[a1, b1] = 0 [a1, b2] = 0 [a1, L] = −2b2 [a2, b0] = 0

[a2, b1] = 0 [a2, b2] = 0 [a2, L] = 0 [b0, b1] = 0

[b0, b2] = 0 [b0, L] = 0 [b1, b2] = 0

[b1, L] = a1 [b2, L] = −2a2.

(22)

The prolongation equations (3)–(4) can be written as

yx = Lut + a0+ a1eu + a2e2u yt = Leuux + b0+ b1eu + b2e2u (23)

whose compatibility condition is ensured by (22).
The next step is to find a closed Lie algebra defined by the nine generators

a0, a1, a2, a3, b0, b1, b2, b3, and L (see appendix A). Since the character of the
commutation relations (A1)–(A12) is basically of the recursive type, we expect that the
procedure of building up finite-dimensional Lie algebras starting from (9)–(15) (ε = 0)
works out for any step. In other words, we have the following possible scenario: equation (1)
(ε = 0) admits the prolongation Lie algebra defined by the commutation relations (see
appendix A):

[L, al−1] = lbl [L, aN ] = 0 [L, bk] = kak
[aj , ak] = 0 [aj , bk] = 0 [bj , bk] = 0

(24)

for j, k,= 0, 1, 2, . . . , N, and l = 1, 2, . . . , N . SinceN is an arbitrary positive integer,
equations (24) represent an infinite-dimensional Lie algebra.

Another interesting result concerning the caseε = 0, is expressed by the following
proposition.
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Proposition 1.Let u be a solution of the equation

utt = (eu)xx. (25)

Then, the functiony2 = y2(x, t) defined by

y2x = −iC0(ξ) coshy1 (26)

y2t = − 1
2ξC1(ξ) sinhy1 (27)

y1x = ut y1t = euux (28)

satisfies the wave equation

y2t t − euy2xx = 0 (29)

whereC0(ξ), with ξ = 2ieu/2, fulfills the differential equation of Bessel type

d2C0

dξ2
+ 1

ξ

dC0

dξ
+ C0 = 0 (30)

and

C1 = i
dC0

dξ
. (31)

To prove this proposition, let us search for a solution to (5)–(7) (ε = 0) of the form

M(u, y) = m(u)g(y) P (u, y) = p(u)h(y). (32)

Substituting equation (32) in (5)–(7) yields

mu = p meu = pu (33)

and

[L, h] = g [L, g] = h [g, h] = 0. (34)

Equations (33) provide

muu −meu = 0 puu − pu = eup (35)

which give

m = C0(ξ) p = − 1
2iξC1(ξ) (36)

respectively, whereξ = 2ieu/2, andC denotes a function of Bessel typeJ, Y, H (1), H (2),
or any linear combination of them [8].

We note that by settingL = iX1, h = X2 andg = iX3, equations (34) become:

[X1, X2] = X3 [X1, X3] = X2 [X2, X3] = 0 (37)

i.e. the Lie algebra associated with the Euclidean group,E2, in the plane [9].
A realization of equations (37) in terms of a two-component pseudopotentialy = (y1, y2)

is

X1 = −i∂y1 X2 = −i sinhy1∂y2 X3 = − coshy1∂y2. (38)

Then, equations (3) can be written (see equations (4) and (3)) as

y1x = ut y1t = euux (39)

y2x = −im coshy1 y2t = −ip sinhy1. (40)

Thus, equations (26)–(27) are simply equations (40) withm and p replaced by the
quantities (36). Furthermore, equation (29) arises straightforwardly from equations (40)
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with the help of equations (33). Finally, equations (30) and (31) are a direct consequence
of (4) and (9)–(15).

We observe also that by combining (29) and (25) we can express equation (25) by means
of the pseudopotentialy2, namely

∂2
t ln

y2t t

y2xx
= ∂2

x

y2t t

y2xx
. (41)

Below we shall display a few examples of non-trivial solutions of the wave equation (29),
starting from some simple solutions of (25).

To this end, let us consider the simple solutionu = t to equation (25). Then, by
choosingC0(ξ) = iJ0(ξ), so thatC1(ξ) = −dJ0(ξ)/dξ = J1(ξ) (see equation (36)), where
J0 andJ1 are Bessel functions of the first kind [8], from equation (40) we obtain

y2x = J0(ξ) coshx (42)

y2t = − 1
2ξJ1(ξ) sinhx (43)

whereξ = 2iet/2 (y1x = 1, y1t = 0; see equation (39)).
Equations (42), (43) can easily be integrated to give

y2(x, t) = J0(2iet/2) sinhx. (44)

Hence, the pseudopotential variable (44) represents a particular solution to the wave equation

y2t t − et y2xx = 0. (45)

Another application of proposition 1 concerns the equation

y2t t − xy2xx = 0 (46)

which corresponds tou = ln x (a special solution to (25)). Using the same procedure as
before, after staightforward calculations we find

y2 = 1

2
ξ

dJ0(ξ)

dξ
cosht (47)

whereξ = 2ix
1
2 .

At this point it is instructive to show that the explicit form of the pseudopotential can
be used to solve certain linear second-order ordinary differential equations with variable
coefficients. In fact, by way of example, let us set

y2 = f (x)g(t) (48)

in equation (46). Then, equation (46) entails

gtt − g = 0 (49)

fxx − 1

x
f = 0. (50)

Now, sinceg = cosht is a particular integral of (48), from (47) and (48) we obtain

f (x) = −ix
1
2J1(2ix

1
2 ). (51)
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4. The caseε 6= 0

For ε 6= 0, the prolongation algebra of (1) is a Lie algebraL closed at the beginning (see
appendix B). This reads

[a0, b0] = [a0, b1] = [L, b1] = 0 (52)

[b0, b1] = εb1 (53)

[b0, L] = εL (54)

[L, a0] = b1. (55)

A matrix representation ofL is

a0 =
( 0 −1 0

0 0 0
0 0 0

)
b0 =

(
ε 0 0
0 ε 0
0 0 0

)

b1 =
( 0 0 1

0 0 0
0 0 0

)
L =

( 0 0 0
0 0 1
0 0 0

)
.

(56)

In view of (56), equations (3) take the form(
y1

y2

y3

)
x

=
( 0 0 0
−1 0 0
0 ut 0

)(
y1

y2

y3

)
(57)

(
y1

y2

y3

)
t

=
(
ε 0 0
0 ε 0
eu euux 0

)(
y1

y2

y3

)
(58)

from which y1 = λ1 eεt , y2 = ζ eεt and

y3ζ = − 1

λ1
eεt ut ζ (59)

y3t = −λ1 eεt ζ 2 ∂

∂ζ

eu

ζ
(60)

whereζ = −λ1x + λ2, andλ1, λ2 are constants of integration. Herey3 plays the role of a
potential variable.

We remark that equations (59), (60) can be exploited to determine explicit solutions
of (1) (ε 6= 0). In doing so, let us seek, for instance, solutions of the typeut = γ (t). After
some manipulations, equations (59) and (60) provide

u = ln

[
1

2λ2
1

(γt + εγ )ζ 2+ αζ + e−εt0t

]
(61)

whereγ = γ (t), α = α(t) = eβ and0 = 0(t) are such that

γ = αt

α
(62)

βtt + εβt = c1eβ (63)

0t = c2 e
∫

dt (γ+ε) (64)

wherec1, c2 are constants of integration.
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It is noteworthy that equation (63), which is a modified version of the reduced Liouville
equation, has the same form as that obtained in the framework of the Lie group approach [5]
via a certain symmetry variable (see section 5).

In the simple casec1 = 0, equation (63) can easily be solved. Then we find the exact
solution to (1)

u = k1e−εt + ln
(
ek2/ε ζ + k0

)
(65)

where k0, k1 and k2 are arbitrary constants. Otherwise (whenc1 6= 0 and ε is a small
parameter), equation (63) can be analysed by using some perturbative technique.

5. The symmetry approach

5.1. Symmetry generators

As is well known [6], in the study of a system of partial differential equations one can use
symmetry groups to find special solutions (which are invariants under some subgroups of the
complete symmetry group) by solving reduced systems of differential equations involving
fewer independent variables than the original system. However, the standard technique has
to be modified if small perturbations are present in the equations under consideration. In
this context, the authors of [2] devised a method based on the concepts of an approximate
group of transformations and approximate symmetries. For the reader’s convenience, in
appendix C we shall recall the main aspects of this method.

In order to obtain the approximate symmetries admitted by (1)(ε 6= 0), in equations
(C20) and (C21) let us take

z = (t, x, u, ut , ux, utt , utx, uxx) k = 1, 2, . . . ,8

X = (ξ1
0 + ε ξ1

1 )∂t + (ξ2
0 + ε ξ2

1 )∂x + (ξ3
0 + ε ξ3

1 )∂u
(66)

ξ j = (ξ3
o )
j + ε(ξ3

1 )
j j = 4, . . . ,8 (67)

where

(ξ3
α)
J = DJ

(
ξ3
α −

2∑
i=1

ξ iα u
α
i

)
+

2∑
i=1

ξ iα u
α
J,i

uαi =
∂uα

∂xi
uαJ,i =

∂uαJ

∂xi
α = 0, 1

(68)

DJ denotes the total derivative with respect toJ = t, x, tt, tx, xx, respectively, andx1 ≡ t ,
x2 ≡ x.

By making equations (C20) and (C21) explicit and keeping in mind (66)–(68), setting the
coefficients of the independent variablesu0t , u0t u0x, . . . to zero, we arrive at the following
set of constraints:

ξ3
j + 2ξ1

j t − 2ξ2
jx = 0 ξ2

jxx − 2ξ2
jx = 0

2ξ3
j tu − ξ1

j tt = 0 ξ3
j tt − eu0ξ3

jxx = 0 (j = 0, 1)
(69)

and

2ξ3
j tu − ξ1

j tt + cj = 0 (70)

whereξ1
j = ξ1

j (t), ξ
2
j = ξ2

j (x), ξ
3
j = ξ3

j (x, t), andcj is a constant of integration.
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By solving equations (69) and (70), expression (66) takes the form

X = [c1t + c2+ ε
(

1
2c1t

2+ k1t + k2
)]
∂t

+ [(c1+ c3)x + c4+ ε
(

1
2k3+ k1

)
x + εk4

]
∂x

+ [2c3+ ε(−2c1t + k3)] ∂u (71)

wherec1, c2, . . . andk1, k2, . . . are arbitrary constants.
From the quantity (71) we have the operators

X1 = X0
1 + ε( 1

2t
2∂t − 2t∂u) X2 ≡ X0

2 = ∂t
X3 ≡ X0

3 = ∂x X4 ≡ X0
4 = x∂x + 2∂u

(72)

where

X0
1 = t∂t + x∂x (73)

and

X5 = ε(t∂t + x∂x) X6 = ε∂t
X7 = 1

2ε(x∂x + 2∂u) X8 = ε∂x.
(74)

The operatorsX0
1, X0

2, X0
3, X0

4 are the (exact) symmetry generators relative to (1) forε = 0,
while X1, X2, X3, X4 are theapproximategenerators of (1) forε 6= 0. Theexactsymmetry
generators of (1)) forε 6= 0 areX0

1, X
0
2 andX0

3. The operators (74) are inessential, in the
sense thatε is a constant factor.

5.2. Algebraic properties

The operators (72), (73) obey the commutation relations

[X2, X1] = X2+ ε(t∂t − 2∂u) (75)

[X2, X4] = 0 [X2, X3] = 0 [X1, X4] = 0 (76)

[X1, X3] = −X3 [X3, X4] = X3. (77)

We note that the commutation rules (75)–(77) do not define a (finite) Lie algebra. However,
they can be used to build up a realization of a finite-dimensional Lie algebra by introducing
the ‘auxiliary’ operators

Z = t∂t − 2∂u Y = 1
2t

2∂t − 2t∂u. (78)

In doing so, it turns out thatY , Z, Xj (j = 1, . . . ,4) satisfy the commutation relations

[X2, X1] = X2+ εZ [X3, X1] = X3 [X1, X4] = 0 (79)

[X1, Y ] = Y [X1, Z] = −εY (80)

[X2, Y ] = Z [X2, Z] = X2 [Z, Y ] = Y (81)

[X2, X3] = [X2, X4] = [X3, X4] = [X3, Y ] = 0

[X4, Y ] = [X3, Z] = [X4, Z] = 0.
(82)

For brevity, by the symbolsY , Z, Xj (j = 1, . . . ,4) we shall indicate both the abstract
elements and the corresponding realization (72)–(73) and (75)–(77) of the finite-dimensional
Lie algebra (79)–(82).
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Now, let us focus our attention on the subalgebra (81). This is isomorphic to thesl(2, R)
algebra given by

[Z′, T ] = 2S [T , S] = 2Z′ [S,Z′] = −2T (83)

where

T =
√

2(Y +X2) S =
√

2(Y −X2) Z′ = 2Z. (84)

Furthermore, the following propositions hold.

Proposition 2.The Casimir operator

C = T 2− S2− Z′2 (85)

≡ 4[2X2Y − Z(Z + 1)] (86)

of the Lie algebra (83), commutes withall the generatorsY , Z, Xj (j = 1, . . . ,4) of the
Lie algebra (79)–(82).

The proof is straightforward.

Proposition 3.The algebra (79)–(82) admits a realization in terms of boson annihilation and
creation operators.

This can be shown by setting

a
†
1 = t a

†
2 = u a

†
3 = x a1 = ∂t a2 = ∂u a3 = ∂x (87)

to yield

[aj , a
†
k] = δjk [aj , ak] = 0 [a†j , a

†
k] = 0 (j, k = 1, 2, 3) (88)

Y = 1
2a
†2

1a1− 2a†1a2 Z = a†1a1− 2a2

X1 = a†1a1+ a†3a3+ ε
(

1
2a
†2

1a1− 2a†1a2

)
X2 = a1 X3 = a3 X4 = a†3a3+ 2a2 (89)

and

C = −8a2(2a2+ 1). (90)

We would like to complete this subsection with a remark on the ‘auxiliary’ operators (78).
These are essential for establishing the closed algebra (79)–(82). Notwithstanding, their
meaning is not completely clear. For instance it should be important to ascertain whether
finite-dimensional Lie algebra analogous to (79)–(82) can be constructed in relation to other
case studies. At present, we are able to affirm only that the operators (78),Z andY can
respectively be interpreted as symmetry variables of the equations

uxx + εux = −(e−u)tt (91)

uxx + εux = −2(e−u/2)tt (92)

which arise formally from (1) via the transformationst → x, u → −u, and t → x,
u → −u/2. FromZ we obtain the invariantη(x) ≡ eq(x) = teu/2, that when inserted
in (91) yields the reduced modified Liouville-type equation

qxx + ε qx = −e−2q . (93)

In a similar way, from (92) we find

rxx + ε rx = −4e−r/2 (94)

where the invariantr(x) = u+ 4 ln t associated withY has been used.
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5.3. Explicit solutions

To see how the symmetry approach works out, we shall deal with two significant examples.
First, let us write down the group transformations related to the generatorX4 ≡ X0

4 (see
equation (72)), which is present in both the casesε = 0 andε 6= 0. We have

x ′ = eλx t ′ = t u′ = u+ 2λ (95)

whereλ is the group parameter.
From equation (95) we deduce the invariant

ρ = x ′ e−u′/2 = x e−u/2. (96)

Then, making use of (96), equation (1) provides the reduced equation

ρ2
t − ρρtt − ερρt = 1 (97)

which is transformed into the (ordinary) modified Liouville-type equation

wtt + εwt = −e−2w (98)

through the change of variableρ = ew. We note that by settingw = −β, equation (98)
coincides with (63) forc1 = 2.

This property may be interpreted as a hint of a possible connection between the
prolongation algebra and the symmetry generators coming from the group analysis. This
important aspect pertinent to the algebraic theory of nonlinear field equations is a challenging
subject for further investigation.

For ε = 0, equation (98) is solved by

w = ln
cos
√
c(t − t0)√
c

(99)

wherec and t0 are positive constants.
Therefore, from (96) we obtain the exact solution

u = 2 ln

√
cx

cos
√
c(t − t0)

(100)

to (1) (with ε = 0).
We point out that the function (100) can be derived from (59) and (60) as a special

case. In fact by choosingε = 0, equations (57) and (58) yield

y3x = (λ2− λ1x)ut y3t = eu[λ1+ (λ2− λ1x)ux ] (101)

from which

eu = 1
2γtx

2 (102)

where we have assumedut = γ (t), λ2 = 0, and the functions of integration have
been taken equal to zero. From equation (102) we obtainut = γtt /γt ≡ γ , i.e.
γ (t) = 2

√
c tan
√
c(t− t0). Consequently, equation (102) reproduces just the solution (100).

This result is not surprising, since the requirementut = γ (t) means that we single out
a class of solutions to (1)(ε = 0) corresponding to the symmetry reduction based on the
invariant ρ(t) associated with the generatorX0

4. The relation betweenρ(t) and γ (t) is
−2ρt/ρ = γ (see equation (96)). Finally, the algebra (52)–(55) withε = 0 coincides with
that derived from (18) fora1 = 0 (see appendix A).

Second, let us deal with the vector field obtained from the linear combination of the
generatorsX3 = X0

3 = ∂x andX2 = X0
2 = ∂t :

V = v∂x + ∂t (103)



1538 E Alfinito et al

wherev is a constant.
The group transformations readx ′ = x + vλ, t ′ = t + λ, which furnish the invariant

σ = x ′ − vt ′ = x − vt. (104)

This quantity can be exploited to find a self-similar solution to (1). In fact, by inserting
u = u(σ) in (1) we obtain

(v2− eu)uσ = εvu+ c0 (105)

wherec0 is a constant of integration.
By setting

u = −τ + ln v2 (106)

andc0 = −2εv ln v, equation (105) provides∫ τ

0

1− e−τ
′

τ ′
dτ ′ = ε

v
(σ − σ0) (107)

(ξ0 = constant).
The left-hand side of (107) is the exponential-integral function [8]

Ein(τ ) = E1(τ )+ ln τ + γ (108)

where E1(τ ) =
∫∞
τ

(
e−τ

′
/τ ′
)

dτ ′ and γ is the Euler constant. Hence, from
equations (106), (107) and (108) we have the self-similar solution

u = −Ein−1
[ ε
v
(σ − σ0)

]
− c0

εv
(109)

where Ein−1(·) denotes the inverse function of (108). We note that the reduced
equation (105) can be considered as an ordinary differential equation which defines the
special function Ein−1(·).

6. Conclusions

We have studied a modified version of a continuous Toda equation in 1+ 1 dimensions.
We have jointly applied two procedures: the prolongation method and the symmetry

approach, which are mostly based on the use of algebraic and group techniques. This
strategy shows itself to be effective both from a conceptual point of view and for practical
purposes, e.g., for the determination of exact solutions of the equations under consideration.

Forε = 0, on the basis of heuristic arguments we have found that an infinite-dimensional
prolongation Lie algebra may be associated with equation (1). This algebra can be closed
step-by-step in the sense explained in section 3. In correspondence of any representation of
a given finite-dimensional Lie algebra in terms of pseudopotential variables, one obtains
a linear problem for (1). Moreover, a link is established between (1) and the wave
equation (37). This connection derives from a special realization of the Lie algebra of
the Euclidean groupE2 related to a class of solutions of the prolongation equations (5)–(7)
(ε = 0). It is noteworthy that non-trivial solutions to (37) expressed in terms of particular
Bessel functions are determined. We also remark that explicit forms of the pseudopotential
can be used to solve certain second-order ordinary differential equations with non-constant
coefficients (see, for example, equation (58)).

For the caseε 6= 0, we have shown that the prolongation algebra is finite-dimensional
and is constituted by four elements. A matrix representation of this algebra (see
equation (64)) allows us to write (1) in a potential form which leads to solutions associated
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with those admitted by a modified version of the reduced Liouville equation (71). This
equation has the same form as that coming from the symmetry approach via the generator
X4 ≡ X0

4 = x∂x + 2∂u. This property indicates the existence of a possible connection
between the prolongation method and the symmetry approach. This is an important
methodological aspect which deserves a wide investigation. Here we remark only that any
approach to this problem should not ignore the contribution by Harrison and Estabrook [10],
where the fundamental concepts of Cartan’s theory of systems of partial differential
equations are exploited to obtain the generators of their invariance groups (isogroups).
Another interesting result achieved in the framework of the symmetry approach is given
by equation (109), which tells us that the inverse of the exponential-integral function turns
out to be defined by the reduced differential equation (105) corresponding to the generator
V = v∂x + ∂t .

We shall conclude with a few comments.
First, we have not tackled the problem of the complete integrability of equation (1)

(for ε = 0). In any case, as occurs for other nonlinear partial differential equations of
physical interest, the existence of an infinite-dimensional prolongation algebra is necessary
for the integrability property. However, in this regard, we recall that completely integrable
nonlinear field equations admit Kac-Moody prolongation algebras endowed with a loop
structure. Therefore, a definitive answer on the complete integrability of (1) (ε = 0) is
strictly connected with a deep study of its associated algebra (24). The situation is different
for ε 6= 0, in which a finite-dimensional prolongation algebra is found at the beginning.
This feature indicates that equation (1) is not completely integrable forε 6= 0.

Second, in the context of the approximate symmetry approach, i.e. whenε is a small
parameter, a realization of a finite-dimensional Lie algebra, i.e. equations (79)–(82), can be
constructed by introducing the auxiliary operators (78). This realization can be expressed in
terms of boson annihilation and creation operators. The algebra (79)–(82), in some sense,
seems to characterize the approximate symmetry of (1), but its role is not yet clear. For
instance, may algebras of this type arise in the study of the approximate symmetries of other
perturbative systems? Finally, our results could be useful in the study of a three-dimensional
extension of equation (1), using the same theoretical framework of this paper. Concerning
this point it should be interesting to see, in analogy with what happens in our case, whether
the equations of [1, proposition 1]

uxx + uyy + (eu)zz = 0 (110)

wxx + wyy + (weu)zz = 0 (111)

share a property similar to that linking equations (25) and (29), through a representation of a
Lie algebra of an extended Euclidean group. Third, we note that one expects for (1) the shock
formation (solution breaking in finite time), and one should ask how this phenomenon could
appear in the algebraic structure allowed by (1). The problem of shock formation for (1) with
ε = 0 was studied by Kodama within the scheme of the inverse scattering transform [11].
This author derived an explicit solution formula for the initial value problem and found
that the general solution may break in finite time. It should be interesting to look for a
possible connection between the Kodama approach and the algebraic strategy developed
in this paper. However , this task is not so easy mainly because we have not solved a
Cauchy problem, in the sense that we have not investigated how a given initial condition
evolves. On the other hand, the algebraic properties of (1) are based on the ansatz (8), i.e.
come from the assumption thatM andP can be expanded in power series in the variable
z = exp(u), and we have no proof, at present, that we can obtain the general solution
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of the prolongation equations (5), (6), and (7) in such a way. Consequently, the problem
of relating the phenomenon of shock formation to the algebraic structure of equation (1)
remains open.

Appendix A. Closed Lie algebras from equations (9)–(15) withε = 0

Exploiting the Jacobi identity, from equations (10) and (11) we obtain

[ak, ak′ ] = − 1

k′
{[L, [bk′ , ak]] − (k + 1)[bk′ , bk+1]} (A1)

[bk′ , ak] = −1

k

{
[L, [bk, bk′ ]] − k′[bk, ak′ ]

}
(A2)

[bk, bk′ ] = − 1

k′
{[L, [ak′−1, bk]] − k[ak′−1, ak]} . (A3)

Equations (A2) and (A3) provide

[b0, ak] = 1

k
[L, [b0, bk]] (A4)

[b0, bk] = −1

k
[L, [ak−1, b0]] (A5)

which give

[b0, ak] = 1

(k!)2
[L, [L, . . . , [L, [L, [b0, a1]] · · ·] (A6)

and

[b0, bk] = 1

k[(k − 1)!] 2
[L, [L, [b0, a1]] · · ·] (A7)

where the operatorL on the right-hand side of (A6) and (A7) appears 2(k−1) and 2(k−1)−1
times, respectively.

Other useful relations are

[a0, ak] = −1

k
{[L, [bk, a0]] − (k + 1)[bk, b1]} (A8)

[a0, bk] = 1

k
{[L, [a0, ak+1]] + [ak−1, b1]} (A9)

[ak, bk] = 1

k
{[L, [ak, ak−1]] + (k + 1)[ak−1, bk+1], } (A10)

where

[ak, ak−1] = 1

k
[L, [bk, ak−1]] . (A11)

We also have

[bk−1, bk] = 1

k
[L, [bk−1, ak−1]] . (A12)

Now, let us suppose thataj = 0, for j = 2, 3, . . . . Then, from equations (9), (10) and (11)
we obtain

[b0, L] = 0 [L, a0] = b1 [L, b1] = a1. (A13)
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Furthermore, from equations (A4) and (13):

[b0, a1] = 0 [a0, b1] = 0 (A14)

while

[a0, a1] = 0 (A15)

from (A8). We also have

[b0, b1] = 0 (A16)

by commuting equation (12) withL. Finally, (A10) provides

[a1, b1] = 0 (A17)

sinceb2 = 0. The previous commutation relations define the algebra (27).
Now, let us suppose thataj = 0, bj = 0, for j = 3, 4, . . . . Then, equation (7) yields

[a0, b0] = 0 (A18)

[a0, b1] + [a1, b0] = 0 (A19)

[a0, b2] + [a1, b1] + [a2, b0] = 0 (A20)

[a1, b2] + [a2, b1] = 0 (A21)

[a2, b2] = 0. (A22)

By commuting (A18) withL and using the Jacobi identity, with the help of (9) (ε = 0)
and (11) we find that

[b0, b1] = 0. (A23)

Taking account of (A23), equation (A4) gives

[b0, a1] = 0. (A24)

Hence, from equation (A19):

[a0, b1] = 0. (A25)

Furthermore, equations (A11), (A25) and (A10) give

[a1, a0] = 0 (A26)

[a1, b1] = 0. (A27)

Since

[a2, b0] = 0 (A28)

(see equations (A6) and (A24)), from equation (A19) we deduce

[a0, b2] = 0. (A29)

On the other hand, from equations (A3) (see equation (A27)):

[b1, b2] = 0 (A30)

while (A2) provides

[b2, a1] = 2[b1, a2]. (A31)

Keeping in mind (A31), from equation (A21) we have

[b1, a2] = [b2, a1] = 0. (A32)
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We also obtain

[a2, a1] = 0 (A33)

from (A1) and (A2). Finally, equation (A8) gives (see equations (A29) and (A30))

[a0, a2] = 0. (A34)

Thus, all the commutators among the elementsaj , bj (j = 0,1,2) have been determined.
The commutators of the type [aj , L] and [bj , L] are expressed by (10) and (11). Therefore,
we have the seven-dimensional Lie algebra (31).

Another example of finite-dimensional Lie algebra emerging from the commutation
relations (9)–(15), involves the nine generatorsaj , bj and L with j = 0, 1, 2, 3. This
algebra can be obtained following essentially the same scheme adopted for the construction
of the algebra (31).

In fact, by setting

M = a0+ a1z + a2z
2+ a3z

3

P = b0+ b1z + b2z
2+ b3z

3
(A35)

equation (7) entails

[a0, b0] = 0 (A36)

[a0, b1] + [a1, b0] = 0 (A37)

[a0, b2] + [a1, b1] + [a2, b0] = 0 (A38)

[a0, b3] + [a1, b2] + [a2, b1] + [a3, b0] = 0 (A39)

[a1, b3] + [a2, b2] + [a3, b1] = 0 (A40)

[a2, b3] + [a3, b2] = 0 (A41)

[a3, b3] = 0. (A42)

Equations (A36)–(A38) have already been examined. We need to scrutinize only those
relations which containa3 andb3, i.e. equations (A39)–(A42).

Since

[a3, b0] = 0 (A43)

(see equations (A6) and (A24)), equation (A39) becomes

[a0, b3] + [a1, b2] + [a2, b1] = 0. (A44)

Now, by commuting (A34) and (A30), we easily find

3[a0, b3] = [a2, b1] (A45)

2[b1, a2] = [b2, a1]. (A46)

Combining equations (A44), (A45) and (A46) we arrive at

[a0, b3] = 0 (A47)

[a2, b1] = 0 (A48)

[a1, b2] = 0. (A49)
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From equations (A8) and (A47)

[a0, a3] = 1
3[b3, b1]. (A50)

On the other hand, equations (A47) and (A49) give

[a1, a2] = 0. (A51)

Thus, using (A3), (A48) and (A51), we have

[b1, b3] = 0. (A52)

Hence, from equation (A50)

[a0, a3] = 0. (A53)

At this stage, let us consider relation (A10) fork = 2. We have

[b2, a2] = 3
2[a1, b3]. (A54)

Furthermore, from equations (A2) and (A52)

[b3, a1] = 3[b1, a3]. (A55)

Now, by elaborating the commutator [L, [a0, a3]] by means of the Jacobi identity (see
equation (A53)) and takingb4=0, we obtain

[a3, b1] = 0. (A56)

Thus, equation (A55) implies

[b3, a1] = 0 (A57)

so that (A54) yields

[a2, b2] = 0. (A58)

Inserting (A58) in (A12) fork = 3, we have

[b2, b3] = 0. (A59)

Then, from equation (A1):

[a1, a3] = 0 (A60)

via (A52) and (A59).
In conclusion, equation (A52) provides

3[b2, a3] = 2[b3, a2] (A61)

(see equation (A59)). Therefore, equations (A61) and (A41) furnish

[b3, a2] = 0 (A62)

[b2, a3] = 0. (A63)

We also have

[a2, a3] = 0 (A64)

from (A1) and (A62). Therefore, by collecting all the results achieved in the case
aj = 0, bj = 0 (j = 4, 5, . . .), the finite-dimensional Lie algebra of elements
a0, a1, a2 a3, b0, b1, b2, b3 andL turns out to be defined by the commutation relations

[aj , ak] = 0 [aj , bk] = 0 [bj , bk] = 0

[L, al−1] = lbl [L, a3] = 0 [L, bk] = kak
(A65)

for j, k = 0, 1, 2, 3 andl = 1, 2, 3.
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Appendix B. Finite-dimensional prolongation algebra (ε 6= 0)

Here we prove that the prolongation algebra associated with (1) withε 6= 0 is the finite-
dimensional Lie algebra (52)–(55). In doing so, let us start from the commutation rule

[L, b1] = a1 (B1)

coming from (10) fork = 1.
Then, by exploiting the Jacobi identity we have

[L, [b0, b1]] + εa1 = [b0, a1] (B2)

with the help of (9). On the other hand, relation (11) (withk = 1) provides

[b0, b1] = εb1 (B3)

by elaborating the commutator [b0, [L, a0]] via the Jacobi identity. Now, substitution of (B3)
in (B2) gives

[b0, a1] = 2εa1. (B4)

Taking account of (B4), equation (13) yields

[a0, b1] = 2εa1. (B5)

At this point, let us consider the commutator [b1[a0, b0]] (see equation (12)), By resorting
again to the Jacobi identity and using (B3), (B4) and (B5) we obtain the constraint

ε2a1 = 0. (B6)

Let us suppose thatε 6= 0. Hence, equation (B6) impliesa1 ≡ 0. Consequently, from
(10) and (11) we infer that 2b2 = [L, a1] = 0, 2a2 = [L, b2] = 0, 3b3 = [L, a2] = 0,
3a3 = [L, b3] = 0, and so on. Therefore, forε 6= 0 the quantitiesa0, a1, b0, b1, andL,
define the closed Lie algebraL expressed by (52)–(55).

Appendix C. The approximate Lie group analysis

Here we recall some basic concepts inherent in the approximate group analysis of differential
equations derived by Baikov, Gazizov and Ibragimov (BGI) in 1988 [5]. The starting
point of this approach is a theorem (see below) that allows one to construct approximate
symmetries which are stable for small perturbations of the differential equation under
investigation.

To describe the BGI method briefly let us consider the one-parameter group of local
point transformations

z′ = g(z, ε, a) (C1)

wherez = (z1, . . . , zN) is the independent variable, anda is the group parameter so that
the valuea = 0 corresponds to the identity transformationg(z, ε, a) = z,

g(g(z, ε, a), ε, b) = g(z, ε, a + b) (C2)

andε is a perturbative parameter. Then let us suppose thatf ≈ g, namely

f (z, ε, a) = g(z, ε, a)+ o(εp) (C3)

for some fixed values ofp > 0.
The transformations

z′ ≈ f (z, ε, a) (C4)
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form an approximate one-parameter groupf

f (z, ε,0) ≈ z (C5)

f (f (z, ε, a), ε, b) ≈ f (z, ε, a + b) (C6)

and the conditionf (z, ε, a) ≈ z for all z implies thata =0.
The following theorem holds.

Theorem 1.Let us assume that the transformations (C4) form an approximate group with
the tangent vector field

ξ(z, ε) ≈ ∂f (z, ε, a)

∂a

∣∣∣∣
a=0

. (C7)

Then, the functionf (z, ε, a) satisfies

∂f (z, ε, a)

∂a
≈ ξ(f (z, ε, a)). (C8)

Conversely, for any (smooth) functionξ(z, ε) the solution (C4) of the approximate Cauchy
problem

dz′

da
≈ ξ(z′, ε)

z′|a=0 ≈ z
(C9)

determines an approximate one-parameter group with parametera.

Theorem 1 is called theapproximate Lie theorem, while equation (C9) is called the
approximate Lie equation.

Resorting to the approximate Lie theorem, we can construct the approximate group of
transformations generated by a given infinitesimal operator. To see how the method works
in practice, let us deal with the casep = 1. Then we seek the approximate group of
transformations

z′ ≈ f0(z, a)+ εf1(z, a) (C10)

determined by the infinitesimal operator

X = (ξ0(z)+ εξ1(z))
∂

∂z
. (C11)

The related approximate Lie equation

d

da
(f0+ εf1) ≈ ξ0(f0(z)+ εf1)+ εξ1(f0(z)+ εf1) (C12)

becomes the system

df0

da
≈ ξ0(f0)

df1

da
≈ ξ ′0(f0)f1+ ξ1(f0) (C13)

whereξ ′0 is the derivative ofξ0. The initial conditionz′|a=0 ≈ z providesf0|a=0 ≈ z and
f1|a=0 ≈ 0.

We are now ready to introduce the concept of approximate invariance.
Precisely, the approximate equation

F(z, ε) ≈ 0 (C14)

is said to be invariant with respect to the approximate group of transformations

z′ ≈ f0(z, ε, a)



1546 E Alfinito et al

if

F(f (z, ε, a)) ≈ 0 (C15)

for all z satisfying (C15). A criterion for obtaining the approximate symmetries of a given
equation is expressed by the following theorem.

Theorem 2.Let us suppose that the functionF(z, ε) = (
F 1(z, ε), . . . , F n(z, ε)

)
, n < N ,

which is jointly analytic in the variablesz andε, satisfies the condition

rankF ′(z, 0)
∣∣
F(z,0)=0 = n

whereF ′(z, 0) = ∥∥∂F ν(z, 0)/∂zi
∥∥ for ν = 1, . . . , n and i = 1, . . . , N . For the equation

F(z, 0) = o(εp) (C16)

to be invariant under the approximate group of transformations

z′ = f (z, ε, a)+ o(εp) (C17)

with infinitesimal operator

X = ξ(z, ε) ∂
∂z

ξ = ∂f

∂a

∣∣∣∣
a=0

+ o(εp) (C18)

it is necessary and sufficient that

XF(z, ε) = o(εp) (C19)

wheneverF(z, ε) = o(εp).

In order to solve (C18) to within o(εp) one needs to representz, F andξk in the form

z ≈ y0+ εy1+ . . .+ εpyp F (z, ε) ≈
p∑
i=0

εiFi(z)

ξ k(z, ε) ≈
p∑
i=0

εiξ ki (z).

For p = 1, we obtain

ξk0 (y0)
∂F0

∂zk

∣∣∣∣
z=y0

= 0 (C20)

ξk1 (y0)
∂F0

∂zk

∣∣∣∣
z=y0

+ ξk0 (y0)
∂F1

∂zk

∣∣∣∣
z=y0

+ yl1
∂

∂zl

[
ξk0 (z)

∂F0

∂zk

]∣∣∣∣
z=y0

= 0 (C21)

under the conditions

F0(y0) = 0 F1(y0)+ yl1
∂F0(z)

∂zl

∣∣∣∣
z=y0

= 0.
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